7.3 EX.: baroscope

Une masse de plomb de petite taille est relié par un tige a une
masse de polystyrene de grande taille: dans I’air le systeme est a
I’équilibre. Que se passe-t-il dans le vide ?

1) Le systeme reste 2) La boulle de 3) La boulle de
a I’équilibre polystyrene monte polystyrene
et celle de plomb descende et celle de

descende plomb monte

https://auditoires-physique.epfl.ch/experiment/179



https://auditoires-physique.epfl.ch/experiment/179

7.3 EX.: baroscope

Chague masse est soumise a la force de gravité et a la poussée d’ Archimede:
mg) + ﬁA = mg) — pVﬁ p est la densité du fluide et V le volume deplacé

Dans I’air: M&*t = 0
(mpg - prﬁ)dp = (meg — pVsg)d, =y My =mg — p(Vs—Vp)  dp=d;

Dans le vide: m,g = m;g — p(V;—V,)g < msg == Laboulede plomb monte a cause du
changement du moment des forces



/.4 Centre de masse (ou d’inertie, ou « de gravité »)

- Le centre de masse d’un systéme a plusieurs corps
est un point G de I’espace défini par:

s 5= YaMgT, Notation:
¢ Za mey 7_}G =R

- Si les masses m, sont constantes, la vitesse du
centre de masse est

ﬁG R dFG Za maFa Za moﬂ_}a ﬁ
— =V, = = = - — =
M dt Za ma{ Za ma M
- = ) . - dﬁ dZa maﬁa
s _9p _dbs_ .. _ & | Théoréme du centre T
ext — dt - dt - G — de mMasse dﬁc dﬁG .
=ar - Mgy = Mae

Le centre de masse d’un systéme se comporte comme un point matériel de masse M = Y m,,
subissant toutes les forces extérieures appliquées sur les différentes parties du systeme, comme Si
ces forces etaient exercees sur ce point matériel

démo: recherche du centre de gravité + balistique 15



https://auditoires-physique.epfl.ch/experiment/148/centre-de-gravite
https://auditoires-physique.epfl.ch/experiment/550/rotation-centre-de-masse-centre-de-lobjet-avec-led

7.4 Propriétes du centre de masse (CM)

- Soit G (G') le centre de masse défini a partir de 1’origine O (0"), on a que:

0 = 3 Y ma0Po= ;3 ma (06 +0P.) =06+ 06 = 0

.

G' = G = lecentre de masse est indépendant de I’origine

- Referentiel R*(GX;V;Z;) du CM i.e. origine placée en G et en mouvement avec G:

7* =GP, =GO + 0P, = —0G + OP, = —#, + 7,

-

r 1 1 >
re = Zatal — EZama(FG + F;) - FG +M2ama Ty

S ar’
= Zamar;:() = Zamad_:zo

M
D mai =
a
dr’*
— % \ — % (8 — —
E mqU, =0 ou O‘_E: o — Ua
(8]

La somme des quantités de mouvement par rapport
au centre de masse est nulle
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7.4 centre de masse et moment cinétigue

. Moment cinétique par rapporta O: L, = X4 %y A My,

Par rapport a un point A on a:

ZA = Zaﬁa Amgv, = Za(A—d + WJ’“) AMyVy = A0 A YaMaVy + Xg Wa AMgU, =

ZA=MAM§G+ZO

. Théoréme du transfert: L. =1

L est le moment cinétique calculé
dans le référentiel du CM GX; V7.

Z)G = Za G—P)a /\mcxﬁa — ZaG—P)a A ma'(ﬁ;c + 7})6) — Zaﬁa A maﬁc; + (Zaﬁama) A 1_7)6 - ZE +0 = ZZ‘

. 18" Théoreme de Konig: Zo =

—

0G

AMDg + L

Le moment cinétique totale par rapport a O est égale a la somme
du moment cinétique de la masse totale M concentrée en CM et
du moment cinétique calculé par rapport au CM

17



7.4 centre de masse et moment cinétigue

- Evolution du moment cinétique par rapport a O: ZO =Y, T, AMyVU, = 0G A Mv. + Z’g

I dzO—O_i:’AM* +0G AMd +de
—dLO—O_G’/\F’“+dLG de e AT

_ —_— - dL —_— - —
di at = 0+0G AP +—5 = 0G A Fext + Mg

Mext OG /\Fext + Mext

. 2°" Théoreme de Konig:

1 2
K =K+ Mvg

L’énergie cinétique totale par rapport a un point O est égale a la
somme de I’énergie cinétique du CM et I’énergie cinétique du
mouvement relatif autour du CM

1 1 =% - 4
- EZmavé - Ezma(va + vG)Z Zma(va + UG + 2V, - Ug) =
a

(04
K* +%Zamav§ + XamgVy) Vg = K* + %M vé
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7.4 EX.: deux balles tournantes autour de deux axes

AXEes sans masse

M=2m
0G = Dé,

B = Qé, ADé, = DQ&,

U = wé; ANdé; = wdéy

Ly = dé; Amiy, + (—déy A —my) = 2md2wé; A & = 2md?wé;

—_— -

Lo = 0G AMB; + L = Dé, AMDQéq + L = MD2Qé, A éy + L, =

D
= MD2Q8, + 2md?wé;

19



7.5 System isolé a deux corps

Deux descriptions possible:

AN

- Référentiel (0x92): coordonnées ry; 75 \ _ mq
(3eme loi)

ﬁ2—>1 = m17€1 (1) =2 =
- . F = —F
F1_>2 _ mzf)z (2) 2—-1 1-2

-

- Référentiel du centre de masse (Gxy2): coordonnées 7; R

myry + my7,

{

— > -
R = r=n-—r
m1+m2

Théoreme du

centre de masse <& (ma1 + m)R=F,,=0 < m7, +m7,=0 < (3emeloi)

3 e 3 F2—>1 F1—>2 1 1 - m4 + moy -
r=rn-—nn= — = + Fpu1 = )F254
my m; mp my mym,
U
mlmz Vé = \
Equation du > . H=_ T 1 = masse réduite du systeme
mouvement relatif ~ f2-1 = U7 1 2

M=m;+m, M = masse totale du systeme
20



7.5 System isolé a deux corps

S - mim,
— Fext == O ‘Ll —
m4 +m2 mi

(m; +my)R =M

Four = pr M =m; +m,

Equivalente a étudier le mouvement de deux particules
indépendantes de masse M et u

# et 7, sont obtenus a partir de 7 et R

= - = -
(m1 + mz)R = m17‘1 + mzf')z (m1 + mz)R = m17_”)1 + mz(Fl — T')
- - - - - -
r=1r—1 - r, =1 —7
- = m2 - = l"’ -
n =R+ r=R+—r1
m; +m, my
- = m]. - = u -
=R — r=R——1r
m; +m, m,
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7.5 EX.: deux chariots reliés par un ressort

.ﬁr . g’ ‘)-

LAt S s rr s s uay B o e ETTTTT T T T N awarw vy

On donne une poussée vers gauche au chariot de droite: apres la
poussee, quel mouvement suivra le centre de masse du systeme
(pas de frottement)?

1) Déplacement 2) Oscillatoire sans 3) Oscillatoire avec
rectiligne uniforme déplacement déplacement vers
Vers gauche gauche

https://auditoires-physique.epfl.ch/experiment/764



https://auditoires-physique.epfl.ch/experiment/764

7.5 Ex.: CM de Solell - Terre

O ; .
B g Masse Soleil Mg = 2 10%° kg
4 lmo Masse Terre m = 6 1024 kg
- ‘ I D = 152 10° km
Apogée | D TTm——_ ok d _ 'perigee 3Jan d = 147 108 km
3 Juillet | 0~ 5@ - Rayon Soleil Rg = 7 105 km
a?/ w TP
. I / M=mi+ my=m+ Mg = Mg
@
mim, mMs
U= = m

_m1+m2_m+M5~

AN

Position du CM: par ex. avec Terre a I’Apogeée par rapport au réeférentiel Oxyz

L myr; +myr,  —mbD mD
R = = ~ ——— = —450 km
F = MI% En absence de forces exterieures, le CM de Terre et Soleil se déplace a
ext

vitesse constante.
Avec une tres bonne approximation, le Soleil est le CM du systeme
Soleil — Terre et donc la Terre tourne autour du Soleil

23



7.6 Collisions: exemples

Experience de Rutherford: source wikipedia

MODELE THOMSON MODELE RUTHERFORD

¢

RESULTAT OBSERVE

Vie quotidienne

Baseline ”” Baseline Volume decreased Baseline Increased gas

HEAT

Temperature increased Volume decreased
Volume constant Wall area decreased
= Increased pressure = Increased pressure

Container pressure constant
More gas molecules added
= Increased volume

Amonton's law

@

Boyle’s law

(b)

Avogadro’s law

©

24



7.6 Collisions entre deux corps

Peuvent étre analysés sur la base des lois de conservation
et permettent d’¢tudier les forces en jeu

Modelisation: le systeme des deux corps est isolé = Lot et Piot conservés

(1) Bien avant le choc (t «< 0):

- Les corps n’exercent aucune force , T
I’un sur I"autre (ils sont trés éloignés @ etat initial:
et on suppose une force a courte portee) F=0

- Chaque corps est un systéme isolé

(2) Pendant le choc (t = 0):

- Les corps interagissent, sous 1’effet collision:
d’une force F (qu’on ne décrit pas) @ '

F#0
(3) Bien apres le choc (t > 0): F =777
- Les corps sont a nouveau libres
etat initial # etat final: les corps ont échange, @ &tat final
entre autres, de la quantité de mouvement: F=0
Ap = Fdt = impulsion
choc

démo: mesure de la durée d’un choc 25



https://auditoires-physique.epfl.ch/experiment/84/mesure-de-la-duree-dun-choc

7.6 Collision entre deux points matériels

- On choisit, sans perte de genéralité, un reférentiel dans lequel I’une des deux boules
est initialement au repos

état initial

e\ état final __
70 (a calculer)
2 ams,
Ut
. Conservation de la guantité de mouvement:
m1vU1; = MU + MoUsg = toutes les vitesses sont dans un méme plan

Projections selon { miv1i = MyV1f €08 01 + mavas cos 02

X et y 0 =mqvis sin 91 — MoVor sin 92

- Variation d’énergie cinétique totale :
1 1 1,

_ 2 2
Q = Kgnal — Kinitial = 5 M1V + 5 M2V2s — 5 M1V

p - L - L - -

" gl " o "
Kir Kor Kii




7.6 Collision élastique: énergie cinétique conservée

- Conservation de la quantité de mouvement:

MV = MyVqr COS Oy + Myv,5 cOS O, (Mmqvy; — MyVyf cos B1)% = (MyV,f COS 6,)?
p— —
0 = myv;7sin6; — My, sin b, mivis sin?0; =m3vs, sin? 0, = m5v5 (1 — cos? 6,)
= (myvy; — myvyp cos6;)? =mivs, — mivi, sin? 6,
m
- Choc élastique: © Q=0 < ;mlvll Zmlvlf += mzvzf = V= m—l(vfi —vis)

mivi; + mivi; cos?6; — 2mivy vy cos Oy =mymy(vi; — vif) — mivip sin? 6,

U

m UZ +m 172 — — 2 2
1Y1i 1Y1f Zmlvlivlf COS 91 = ‘mz (vli — vlf)
ax2 +bx+c=0

2 2 U _ThEVA ey
vir (Mg +my) + vi;(my —my) — 2my vy vy cosfy; =0 X =" — b T adc
U 4m] m3 —m
= cos? 0, — 4
vff Zml v:lf ml - mz (ml + mZ)Z (ml + mZ)Z
> — cos 64 + =0 4m? m2
vli ml + mz vll ml + mz = 1 COSZ 6, — 1+ _2
(my + my)? ! mf

vlf B
V1i mq + m,

(cosf; + |cos?6; —1 +—)
27



7.6 Collision elastique

2

m
= (cos B, + C05291—1+—; )
V1i m4q + m, ml

Vip Ty

- Deux conditions a satisfaire: A= 0 ; v, =0

- my <m, » A> 0 toujours vrai (pas de restriction sur I’angle 0 < 6; < m)

2 - -, =
m Une solution positive
C05291—1+—§2C08291 — P
mj 2
v m m
1 ! (cosB; + [cos?6; — 1+ —3
V1i m; +m, my
- my>m, By A20 si sing <2 = Deux solutions possibles
1

2
2 mz 2
cos*6; —1+— < cos* 6,

my

N.B.: Le probleme a 4 inconnues (v, ¢, v,f, 61, 8;) mais que 3 équations donc on ne peut pas le

résoudre completement
28



7.6 Collision élastique (2)

- Cas particulier: collision unidimensionnelle ou v,; alignée avec le point 2
(entierement soluble avec les lois de conservation)

- On reprend les résultats précédents avec 68; = 6, = 0, et vy;, V1¢, €t v, SONt Maintenant
les composantes sur I’axe x (et non plus les normes)

_ Vif myq mo, mq m; Xt m, m; £t m,
- On obtient; - 1+— | = = —
Vqi m; +m, mq m; +m, mq m; +m,
_ 2 _ M1, 5 2
1) vif = vy vy = —(vii —vif) = 0 Pas de choc
2
m; —mj; 4 2
2 . B V 2 _Mic 2 20\ My 2Mmimp 2 — M ]
) vlf mq + m, e sz ms (vll vlf) my (mg+my)? Vi = Vaf my+m; Vi
- Cas limites:
Simi=meo : v1r=0 et vor = vy; échange des vitesses
Simi K<mg : vir R —v1; et var =0 rebond sur une masse « infinie »
Simi>mo : vir R vy et vor = 2uy; collision avec masse négligeable

DEMO:https://auditoires-physique.epfl.ch/experiment/766 Demo: https://auditoires-physique.epfl.ch/experiment/86 29
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7.6: Choc élastique entre deux points matériels

. Cas particulier m; = m, = m (mais v;; n’est pas alignée avec le point 2):
- Par exemple boules de billard sans frottements (pour autant que I’approximation
du point matériel soit valable, c-a-d billard sans « effets »)

- On obtient: 1 v1t = 0 : échange des vitesses
v ==
et ((30891 + +/cos? 91) =
V1; 2 V1f = V711 COS 91

- St vye # 0, les vitesses finales forment un angle droit:

état initial

m V1i 'm

conservation de piot :  U1; = V1if + U2 = triangle
conservation de Ko : v} = v + vy = triangle rectangle
= 01 +602=73

démo: table a air



7.6 Collision inelastigue

- Definition choc inélastique: énergie cinétique non conservee
- Q> 0: la collision dégage de I’énergie cinétique (exo-énergétique)
- Q < 0: la collision absorbe de I’énergie cinétique (endo-énergétique)

variation d’énergie interne du systeme = - Q
(par conservation de I’énergie totale):

- elle peut conduire a un changement de I’identité des particules en interaction, ou du
nombre de particules dans I’état final; exemples:

- Choc entre un marteau et un verre de cristal
- Collisions entre particules élémentaires, par ex. e +et > pu +put

- Cas particulier: choc mou (les deux points materiels restent accrochés): v, = v, = V

Conservation de la My = (my +m)V = V=—3 3. V = Vitesse du
quantité de mouvement: M centre de masse

1 1 1 m12 1 myim,
Kp = Ky =5 (my + mp)V? ——myvf; = §<m - m1> vi; = _Emvlzi

Energie transformée en chaleur lors du choc , -
démo: rail a air
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