
7.3 Ex.: baroscope

Une masse de plomb de petite taille est relié par un tige à une 

masse de polystyrène de grande taille: dans l’air le système est à 

l’équilibre. Que se passe-t-il dans le vide ?

1) Le système reste 

à l’équilibre

2) La boulle de 

polystyrène monte 

et celle de plomb 

descende

3) La boulle de 

polystyrène 

descende et celle de 

plomb monte

https://auditoires-physique.epfl.ch/experiment/179

https://auditoires-physique.epfl.ch/experiment/179


7.3 Ex.: baroscope

Chaque masse est soumise à la force de gravité et à la poussée d’Archimède: 

m Ԧ𝑔 + Ԧ𝐹𝐴 = 𝑚 Ԧ𝑔 − 𝜌𝑉 Ԧ𝑔 𝜌 est la densité du fluide et 𝑉 le volume deplacé

(𝑚𝑝 Ԧ𝑔 − 𝜌𝑉𝑝 Ԧ𝑔)𝑑𝑝 = (𝑚𝑠 Ԧ𝑔 − 𝜌𝑉𝑠 Ԧ𝑔)𝑑𝑠 𝑚𝑝 = 𝑚𝑠 − 𝜌(𝑉𝑠−𝑉𝑝)

Dans l’air:

Dans le vide: 𝑚𝑝 Ԧ𝑔 = 𝑚𝑠 Ԧ𝑔 − 𝜌(𝑉𝑠−𝑉𝑝) Ԧ𝑔 < 𝑚𝑠 Ԧ𝑔 La boule de plomb monte à cause du 

changement du moment des forces 

𝑀𝑂
𝑒𝑥𝑡 = 0

𝑑𝑝= 𝑑𝑠



• Le centre de masse d’un système à plusieurs corps 

est un point G de l’espace défini par:

• Si les masses 𝑚𝛼 sont constantes, la vitesse du 

centre de masse est
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7.4 Centre de masse (ou d’inertie, ou « de gravité »)

démo: recherche  du centre de gravité + balistique

Le centre de masse d’un système se comporte comme un point matériel de masse 𝑀 = ∑𝑚𝛼

subissant toutes les forces extérieures appliquées sur les différentes parties du système, comme si 

ces forces étaient exercées sur ce point matériel

Théorème du centre 
de masse

G

Ԧ𝑟𝐺 = 𝑂𝐺 =
∑𝛼𝑚𝛼 Ԧ𝑟𝛼
∑𝛼𝑚𝛼

Ԧ𝑝𝐺
𝑀

= Ԧ𝑣𝐺 =
𝑑Ԧ𝑟𝐺
𝑑𝑡

=
∑𝛼𝑚𝛼

ሶԦ𝑟𝛼
∑𝛼𝑚𝛼

=
∑𝛼𝑚𝛼 Ԧ𝑣𝛼
∑𝛼𝑚𝛼

=
Ԧ𝑝

𝑀


Ԧ𝐹𝑒𝑥𝑡 =
𝑑 Ԧ𝑝

𝑑𝑡
=
𝑑 Ԧ𝑝𝐺
𝑑𝑡

= 𝑀 Ԧ𝑎𝐺 = 𝑀 ሷ𝑅
Ԧ𝐹𝑒𝑥𝑡 =

𝑑 Ԧ𝑝

𝑑𝑡
=
𝑑 ∑𝛼𝑚𝛼 Ԧ𝑣𝛼

𝑑𝑡
=

=
𝑑 Ԧ𝑝𝐺
𝑑𝑡

= 𝑀
𝑑 Ԧ𝑣𝐺
𝑑𝑡

= 𝑀 Ԧ𝑎𝐺

ො𝑥

ො𝑦

Ƹ𝑧Notation:

Ԧ𝑟𝐺 ≡ 𝑅

Ԧ𝑝𝐺 = 𝑀 Ԧ𝑣𝐺 = Ԧ𝑝

https://auditoires-physique.epfl.ch/experiment/148/centre-de-gravite
https://auditoires-physique.epfl.ch/experiment/550/rotation-centre-de-masse-centre-de-lobjet-avec-led


• Soit 𝐺 (𝐺′) le centre de masse défini à partir de l’origine 𝑂 (𝑂′), on a que:

• Référentiel 𝑅∗(G ො𝑥𝐺 ො𝑦𝐺 Ƹ𝑧𝐺) du CM i.e. origine placée en G et en mouvement avec G: 
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7.4 Propriétés du centre de masse (CM)

𝐺′ = 𝐺 ⇒ le centre de masse est indépendant de l’origine 

Ԧ𝑟𝐺 =
∑𝛼𝑚𝛼 Ԧ𝑟𝛼

𝑀
=

1

𝑀
∑𝛼𝑚𝛼( Ԧ𝑟𝐺 + Ԧ𝑟𝛼

∗) = Ԧ𝑟𝐺 +
1

𝑀
∑𝛼𝑚𝛼 Ԧ𝑟𝛼

∗  ∑𝛼𝑚𝛼 Ԧ𝑟𝛼
∗ = 0  ∑𝛼𝑚𝛼

𝑑 Ԧ𝑟𝛼
∗

𝑑𝑡
= 0

⇒

Ԧ𝑟𝛼
∗ = 𝐺𝑃𝛼 = 𝐺𝑂 + 𝑂𝑃𝛼 = −𝑂𝐺 + 𝑂𝑃𝛼 = −Ԧ𝑟𝐺 + Ԧ𝑟𝛼

ො𝑥
ො𝑦

Ƹ𝑧

ො𝑥𝐺

ො𝑦𝐺Ƹ𝑧𝐺

La somme des quantités de mouvement par rapport 

au centre de masse est nulle

෍

𝛼

𝑚𝛼 Ԧ𝑟𝛼
∗ = 0



• Moment cinétique par rapport à O: 𝐿𝑂 = ∑𝛼 Ԧ𝑟𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼

• Théorème du transfert:

• 1er Théorème de König:
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7.4 centre de masse et moment cinétique

𝐿𝐺 = 𝐿𝐺
∗

ො𝑥
ො𝑦

Ƹ𝑧

ො𝑥𝐺

ො𝑦𝐺Ƹ𝑧𝐺

Par rapport à un point A on a:

𝐿𝐴 = ∑𝛼𝐴𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 = ∑𝛼(𝐴𝑂 + 𝑂𝑃𝛼) ∧ 𝑚𝛼 Ԧ𝑣𝛼 = 𝐴𝑂 ∧ ∑𝛼𝑚𝛼 Ԧ𝑣𝛼 + ∑𝛼𝑂𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 ⇒

𝐿𝐴 = 𝐴𝑂 ∧ 𝑀 Ԧ𝑣𝐺 + 𝐿𝑂

𝐿𝐺 = ∑𝛼 𝐺𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 = ∑𝛼 𝐺𝑃𝛼 ∧ 𝑚𝛼( Ԧ𝑣𝛼
∗ + Ԧ𝑣𝐺) = ∑𝛼 𝐺𝑃𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼

∗ + (∑𝛼 𝐺𝑃𝛼𝑚𝛼) ∧ Ԧ𝑣𝐺 = 𝐿𝐺
∗ +0 = 𝐿𝐺

∗

𝐿𝑂 = 𝑂𝐺 ∧𝑀 Ԧ𝑣𝐺 + 𝐿𝐺
∗

𝐿𝐺
∗ est le moment cinétique calculé 

dans le référentiel du CM G ො𝑥𝐺 ො𝑦𝐺 Ƹ𝑧𝐺

Le moment cinétique totale par rapport à O est égale à la somme 

du moment cinétique de la masse totale M concentrée en CM et 

du moment cinétique calculé par rapport au CM 

=

0



• Evolution du moment cinétique par rapport à O: 𝐿𝑂 = ∑𝛼 Ԧ𝑟𝛼 ∧ 𝑚𝛼 Ԧ𝑣𝛼 = 𝑂𝐺 ∧𝑀 Ԧ𝑣𝐺 + 𝐿𝐺
∗

• 2er Théorème de König:
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7.4 centre de masse et moment cinétique

ො𝑥
ො𝑦

Ƹ𝑧

ො𝑥𝐺

ො𝑦𝐺Ƹ𝑧𝐺
𝐾 = 𝐾∗ +

1

2
𝑀𝑣𝐺

2

L’énergie cinétique totale par rapport à un point O est égale à la 

somme de l’énergie cinétique du CM et l’énergie cinétique du 

mouvement relatif autour du CM 

𝑑𝐿𝑂
𝑑𝑡

= 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +
𝑑𝐿𝐺

∗

𝑑𝑡

𝑑𝐿𝑂
𝑑𝑡

=
ሶ

𝑂𝐺 ∧ 𝑀 Ԧ𝑣𝐺 + 𝑂𝐺 ∧𝑀 Ԧ𝑎𝐺 +
𝑑𝐿𝐺
𝑑𝑡

= 0 + 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +
𝑑𝐿𝐺
𝑑𝑡

= 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +𝑀𝐺
𝑒𝑥𝑡

𝐾 =
1

2
෍

𝛼

𝑚𝛼𝑣𝛼
2 =

1

2
෍

𝛼

𝑚𝛼 Ԧ𝑣𝛼
∗ + Ԧ𝑣𝐺

2 =
1

2
෍

𝛼

𝑚𝛼(𝑣𝛼
∗2 + 𝑣𝐺

2 + 2 Ԧ𝑣𝛼
∗ ∙ Ԧ𝑣𝐺) =

𝐾∗ +
1

2
∑𝛼𝑚𝛼𝑣𝐺

2 +(∑𝛼𝑚𝛼 Ԧ𝑣𝛼
∗) ∙ Ԧ𝑣𝐺 = 𝐾∗ +

1

2
𝑀 𝑣𝐺

2

𝑀𝑂
𝑒𝑥𝑡 = 𝑂𝐺 ∧ Ԧ𝐹𝑒𝑥𝑡 +𝑀𝐺

𝑒𝑥𝑡∗
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7.4 Ex.: deux balles tournantes autour de deux axes

M = 2m

Axes sans masse

Ԧ𝑣𝐺 = Ω Ƹ𝑒𝑧 ∧ 𝐷 Ƹ𝑒𝑟 = 𝐷Ω Ƹ𝑒𝜃

𝐿𝑂 = 𝑂𝐺 ∧𝑀 Ԧ𝑣𝐺 + 𝐿𝐺
∗ = 𝐷 Ƹ𝑒𝑟 ∧ 𝑀𝐷Ω Ƹ𝑒𝜃 + 𝐿𝐺

∗ = 𝑀𝐷2Ω Ƹ𝑒𝑟 ∧ Ƹ𝑒𝜃 + 𝐿𝐺
∗ =

= 𝑀𝐷2Ω Ƹ𝑒𝑧 + 2𝑚𝑑2𝜔 Ƹ𝑒𝑧
∗

𝑂𝐺 = 𝐷 Ƹ𝑒𝑟

𝐿𝐺
∗ = 𝑑 Ƹ𝑒𝑟

∗ ∧ 𝑚 Ԧ𝑣𝑚
∗ + −𝑑 Ƹ𝑒𝑟

∗ ∧ −𝑚 Ԧ𝑣𝑚
∗ = 2𝑚𝑑2𝜔 Ƹ𝑒𝑟

∗ ∧ Ƹ𝑒𝜙
∗ = 2𝑚𝑑2𝜔 Ƹ𝑒𝑧

∗

d

d

D

Ω

𝜔

Ƹ𝑒𝑟
m

m

G

Ƹ𝑒𝜃Ƹ𝑒𝑧

Ƹ𝑒𝑧
∗

Ƹ𝑒𝑟
∗

Ƹ𝑒𝜙
∗

Ԧ𝑣𝑚
∗ = 𝜔 Ƹ𝑒𝑧

∗ ∧ 𝑑 Ƹ𝑒𝑟
∗ = 𝜔𝑑 Ƹ𝑒𝜙

∗



• Référentiel (𝑂ො𝑥 ො𝑦 Ƹ𝑧): coordonnées  Ԧ𝑟1; Ԧ𝑟2

• Référentiel du centre de masse (G ො𝑥 ො𝑦 Ƹ𝑧): coordonnées  Ԧ𝑟 ; 𝑅
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7.5 System isolé à deux corps

(3ème loi)

Equation du 
mouvement relatif

 = masse réduite du système

M = masse totale du système

ቐ
Ԧ𝐹2→1 = 𝑚1

ሷԦ𝑟1 (1)

Ԧ𝐹1→2 = 𝑚2
ሷԦ𝑟2 (2)

Ԧ𝐹2→1 = − Ԧ𝐹1→2

ො𝑥
ො𝑦

Ƹ𝑧

𝑅 =
𝑚1 Ԧ𝑟1 +𝑚2 Ԧ𝑟2
𝑚1 +𝑚2

Ԧ𝑟 = Ԧ𝑟1 − Ԧ𝑟2

𝑚1 +𝑚2
ሷ𝑅 = Ԧ𝐹𝑒𝑥𝑡 = 0

Théorème du 

centre de masse
 𝑚1

ሷԦ𝑟1+𝑚1
ሷԦ𝑟2 = 0 (3ème loi)

ሷԦ𝑟 = ሷԦ𝑟1 −
ሷԦ𝑟2 =

Ԧ𝐹2→1
𝑚1

−
Ԧ𝐹1→2
𝑚2

=
1

𝑚1
+

1

𝑚2

Ԧ𝐹2→1 = (
𝑚1 +𝑚2

𝑚1𝑚2
) Ԧ𝐹2→1

Ԧ𝐹2→1 = 𝜇 ሷԦ𝑟


𝜇 =
𝑚1𝑚2

𝑚1 +𝑚2

𝑀 = 𝑚1 +𝑚2

Deux descriptions possible:

 
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7.5 System isolé à deux corps

ො𝑥
ො𝑦

Ƹ𝑧

𝑚1 +𝑚2
ሷ𝑅 = 𝑀 ሷ𝑅 = Ԧ𝐹𝑒𝑥𝑡 = 0 𝜇 =

𝑚1𝑚2

𝑚1 +𝑚2

𝑀 = 𝑚1 +𝑚2

Ԧ𝐹2→1 = 𝜇 ሷԦ𝑟

Equivalente à étudier le mouvement de deux particules 

indépendantes de masse M et 

(𝑚1 +𝑚2)𝑅 = 𝑚1 Ԧ𝑟1 +𝑚2 Ԧ𝑟2

Ԧ𝑟 = Ԧ𝑟1 − Ԧ𝑟2

(𝑚1 +𝑚2)𝑅 = 𝑚1 Ԧ𝑟1 +𝑚2(Ԧ𝑟1 − Ԧ𝑟)

Ԧ𝑟2 = Ԧ𝑟1 − Ԧ𝑟

Ԧ𝑟1 = 𝑅 +
𝑚2

𝑚1 +𝑚2
Ԧ𝑟 = 𝑅 +

μ

𝑚1
Ԧ𝑟

Ԧ𝑟2 = 𝑅 −
𝑚1

𝑚1 +𝑚2
Ԧ𝑟 = 𝑅 −

μ

𝑚2
Ԧ𝑟

Ԧ𝑟1et Ԧ𝑟2 sont obtenus à partir de Ԧ𝑟 et 𝑅



7.5 Ex.: deux chariots reliés par un ressort

On donne une poussée vers gauche au chariot de droite: après la 

poussée, quel mouvement suivra le centre de masse du système 

(pas de frottement)?

1) Déplacement 

rectiligne uniforme 

vers gauche

2) Oscillatoire sans 

déplacement

3) Oscillatoire avec 

déplacement vers 

gauche

https://auditoires-physique.epfl.ch/experiment/764

https://auditoires-physique.epfl.ch/experiment/764
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7.5 Ex.: CM de Soleil - Terre

𝑑

𝑀

𝑚

Périgée 3 JanApogée 

3 Juillet

𝐷

ො𝑥
ො𝑦

Ƹ𝑧

Masse Soleil MS = 2 1030 kg

Masse Terre m = 6 1024 kg

D = 152 106 km

d = 147 106 km

Rayon Soleil RS = 7 105 km

Position du CM: par ex. avec Terre à l’Apogée par rapport au référentiel O ො𝑥 ො𝑦 Ƹ𝑧

𝑅 =
𝑚1 Ԧ𝑟1 +𝑚2 Ԧ𝑟2
𝑚1 +𝑚2

=
−𝑚𝐷

𝑚 +𝑀𝑆

≈ −
𝑚𝐷

𝑀𝑆

≈ −450 𝑘𝑚

𝜇 =
𝑚1𝑚2

𝑚1 +𝑚2
=

𝑚𝑀𝑆

𝑚+𝑀𝑆
≈ 𝑚

𝑀 = 𝑚1+𝑚2= 𝑚 +𝑀𝑆 ≈ 𝑀𝑆

En absence de forces extérieures, le CM de Terre et Soleil se déplace à 

vitesse constante. 

Avec une très bonne approximation, le Soleil est le CM du système 

Soleil – Terre et donc la Terre tourne autour du Soleil

Ԧ𝐹𝑒𝑥𝑡 = 𝑀 ሷ𝑅
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7.6 Collisions: exemples

Cern
Experience de Rutherford: Source Wikipedia

Collisions entre particules d’un gaz

Vie quotidienne



• Peuvent être analysés sur la base des lois de conservation

et permettent d’étudier les forces en jeu

• Modélisation: le système des deux corps est isolé

(1) Bien avant le choc (𝑡 ≪ 0):

- Les corps n’exercent aucune force 
l’un sur l’autre (ils sont très éloignés 
et on suppose une force à courte portée)

- Chaque corps est un système isolé

(2) Pendant le choc (𝑡 ≃ 0):

- Les corps interagissent, sous l’effet
d’une force F (qu’on ne décrit pas) 

(3) Bien après le choc (𝑡 ≫ 0):

- Les corps sont à nouveau libres
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7.6 Collisions entre deux corps

démo: mesure de la durée d’un choc

① état initial: 

𝐹 = 0

③ état final:

𝐹 = 0

② collision:

𝐹 ≠ 0
𝐹 =? ? ?

état initial ≠ état final: les corps ont échangé, 

entre autres, de la quantité de mouvement:

https://auditoires-physique.epfl.ch/experiment/84/mesure-de-la-duree-dun-choc


• On choisit, sans perte de généralité, un référentiel dans lequel l’une des deux boules 
est initialement au repos

• Conservation de la quantité de mouvement:

• Variation d’énergie cinétique totale :
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7.6 Collision entre deux points matériels

Projections selon

ො𝑥 et ො𝑦

⇒ toutes les vitesses sont dans un même plan

état initial

(supposé connu)

état final

(à calculer)

ො𝑥

ො𝑦



• Conservation de la quantité de mouvement:

• Choc élastique: ⇔ 𝑄 = 0 ⇔
1

2
𝑚1𝑣1𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2
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7.6 Collision élastique: énergie cinétique conservée

𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 cos 𝜃1 +𝑚2𝑣2𝑓 cos 𝜃2

0 = 𝑚1𝑣1𝑓 sin 𝜃1 −𝑚2𝑣2𝑓 sin 𝜃2

(𝑚1𝑣1𝑖 −𝑚1𝑣1𝑓 cos 𝜃1)
2 = (𝑚2𝑣2𝑓 cos 𝜃2)

2

𝑚1
2𝑣1𝑓

2 sin2 𝜃1 =𝑚2
2𝑣2𝑓

2 sin2 𝜃2 =𝑚2
2𝑣2𝑓

2 (1 − cos2𝜃2)
 

𝑚1
2𝑣1𝑖

2 +𝑚1
2𝑣1𝑓

2 cos2𝜃1 − 2𝑚1
2𝑣1𝑖𝑣1𝑓 cos 𝜃1 =𝑚1𝑚2(𝑣1𝑖

2 − 𝑣1𝑓
2 ) − 𝑚1

2𝑣1𝑓
2 sin2 𝜃1

(𝑚1𝑣1𝑖 −𝑚1𝑣1𝑓 cos 𝜃1)
2 =𝑚2

2𝑣2𝑓
2 −𝑚1

2𝑣1𝑓
2 sin2 𝜃1

𝑚1𝑣1𝑖
2 +𝑚1𝑣1𝑓

2 − 2𝑚1𝑣1𝑖𝑣1𝑓 cos 𝜃1 =𝑚2(𝑣1𝑖
2 − 𝑣1𝑓

2 )

𝑣1𝑓
2 𝑚1 +𝑚2 + 𝑣1𝑖

2 (𝑚1 −𝑚2) − 2𝑚1𝑣1𝑖𝑣1𝑓 cos 𝜃1 =0

𝑣1𝑓
2

𝑣1𝑖
2 −

2𝑚1

𝑚1 +𝑚2
cos 𝜃1

𝑣1𝑓

𝑣1𝑖
+
𝑚1 −𝑚2

𝑚1 +𝑚2
= 0

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

𝑥 =
−𝑏 ± ∆

2𝑎
∆= 𝑏2 − 4𝑎𝑐

∆=
4𝑚1

2

(𝑚1 +𝑚2)
2
cos2𝜃1 − 4

𝑚1
2 −𝑚2

2

𝑚1 +𝑚2
2

=
4𝑚1

2

(𝑚1 +𝑚2)
2
(cos2𝜃1 − 1 +

𝑚2
2

𝑚1
2)






𝑣1𝑓

𝑣1𝑖
=

𝑚1

𝑚1 +𝑚2
(cos 𝜃1 ± cos2𝜃1 − 1 +

𝑚2
2

𝑚1
2 )

𝑣2𝑓
2 =

𝑚1

𝑚2
(𝑣1𝑖

2 − 𝑣1𝑓
2 )



• Deux conditions à satisfaire: ∆≥ 0 ; 𝑣1𝑓 ≥ 0

- 𝑚1 ≤ 𝑚2 ∆≥ 0 toujours vrai (pas de restriction sur l’angle 0 ≤ 𝜃1 ≤ 𝜋)

- 𝑚1 > 𝑚2 ∆≥ 0 si    sin 𝜃1 ≤
𝑚2

𝑚1
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cos2𝜃1 − 1 +
𝑚2
2

𝑚1
2 ≥ cos2𝜃1

𝑣1𝑓

𝑣1𝑖
=

𝑚1

𝑚1 +𝑚2
(cos 𝜃1 ± cos2𝜃1 − 1 +

𝑚2
2

𝑚1
2 )


Une solution positive

𝑣1𝑓

𝑣1𝑖
=

𝑚1

𝑚1 +𝑚2
(cos 𝜃1 + cos2𝜃1 − 1 +

𝑚2
2

𝑚1
2 )

 Deux solutions possibles

N.B.: Le problème a 4 inconnues (𝑣1𝑓, 𝑣2𝑓, 𝜃1, 𝜃2) mais que 3 équations donc on ne peut pas le 

résoudre complètement 

cos2𝜃1 − 1 +
𝑚2
2

𝑚1
2 ≤ cos2𝜃1



• Cas particulier:  collision unidimensionnelle ou Ԧ𝑣1𝑖 alignée avec le point 2  

(entièrement soluble avec les lois de conservation)

- On reprend les résultats précédents avec 𝜃1 = 𝜃2 = 0, et 𝑣1i, 𝑣1f, et 𝑣2f sont maintenant 

les composantes sur l’axe 𝑥 (et non plus les normes)

- On obtient:

- Cas limites:
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7.6 Collision élastique (2)

échange des vitesses

rebond sur une masse « infinie »

collision avec masse négligeable

𝑣1𝑓

𝑣1𝑖
=

𝑚1

𝑚1 +𝑚2
1±

𝑚2

𝑚1
=

𝑚1

𝑚1 +𝑚2
(
𝑚1 ±𝑚2

𝑚1
) =

𝑚1 ±𝑚2

𝑚1 +𝑚2

𝑣2𝑓
2 =

𝑚1

𝑚2
𝑣1𝑖
2 − 𝑣1𝑓

2 = 01) 𝑣1𝑓 = 𝑣1𝑖

2) 𝑣1𝑓 =
𝑚1 −𝑚2

𝑚1 +𝑚2
𝑣1𝑖 𝑣2𝑓

2 =
𝑚1

𝑚2
𝑣1𝑖
2 − 𝑣1𝑓

2 =
𝑚1

𝑚2

4𝑚1𝑚2

(𝑚1+𝑚2)
2 𝑣1𝑖

2  𝑣2𝑓 =
2𝑚1

𝑚1+𝑚2
𝑣1𝑖

Pas de choc

DEMO:https://auditoires-physique.epfl.ch/experiment/766 Demo: https://auditoires-physique.epfl.ch/experiment/86

https://auditoires-physique.epfl.ch/experiment/766
https://auditoires-physique.epfl.ch/experiment/86


• Cas particulier 𝑚1 = 𝑚2 = 𝑚 (mais Ԧ𝑣1𝑖 n’est pas alignée avec le point 2):

- Par exemple boules de billard sans frottements (pour autant que l’approximation 

du point matériel soit valable, c-à-d billard sans « effets »)

- On obtient:

- Si 𝑣1f ≠ 0, les vitesses finales forment un angle droit:
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7.6: Choc élastique entre deux points matériels 

démo: table à air

choc

état initial état final



• Définition choc inélastique:   énergie cinétique non conservée

- Q > 0: la collision dégage de l’énergie cinétique (exo-énergétique)

- Q < 0: la collision absorbe de l’énergie cinétique (endo-énergétique)

• variation d’énergie interne du système = - Q

(par conservation de l’énergie totale):

- elle peut conduire à un changement de l’identité des particules en interaction, ou du 

nombre de particules dans l’état final; exemples:

- Choc entre un marteau et un verre de cristal

- Collisions entre particules élémentaires, par ex.

• Cas particulier: choc mou (les deux points matériels restent accrochés):
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démo: rail à air

Ԧ𝑣1𝑓 = Ԧ𝑣2𝑓 = 𝑉

Conservation de la 

quantité de mouvement:
𝑚1 Ԧ𝑣1𝑖 = (𝑚1 +𝑚2)𝑉  𝑉 =

𝑚1

𝑚1+𝑚2
Ԧ𝑣1𝑖 𝑉 = Vitesse du 

centre de masse

𝐾𝑓 − 𝐾𝑖 =
1

2
𝑚1 +𝑚2 𝑉2 −

1

2
𝑚1𝑣1𝑖

2 =
1

2

𝑚1
2

𝑚1 +𝑚2
−𝑚1 𝑣1𝑖

2 = −
1

2

𝑚1𝑚2

𝑚1 +𝑚2
𝑣1𝑖
2

Energie transformée en chaleur lors du choc




